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ABSTRACT:  In this work, measured speech waveform data was used as 
a basis for partitioning an utterance Into segments and 
for classiflying those segments. Mathematical classifi- 
cations were used instead of the traditional phonemes or 
linguistic categories. This  Involved clustering methods 
applied to hyperspace points representing periodic samples 
of speech waveforms.  The cluster centers, or hyperphonemes 
(HPs), were used to classify the sample points by the 
nearest-neighbor technique. Speech segments were formed 
by grouping adjacent points with the same classification. 
A dictionary of ^k  different words from a single speaker 
was processed by this method. 216 utterances, representing 
four more repetitions by the same speaker each of the 
original 5^ words, were similarly analyzed into strings of 
hyperphonemes and matched against the dictionary by 
heuristically developed formulas.  87^ were correctly 
recognized, although almost no attempt was made to modify 
and improve the initial methods and parameters. 
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INTRODUCTION 

This work was performed by the author at the Stanford University Computer 

Science Department Artificial   Intelligence Project during a sabbatical year 

granted by the   IBM Advanced Systems Development Division.    The work was done 

with the advice and counsel of Drs. A.   L.  Samuel and D.  R.  Reddy.    Generous 

assistance was provided by Gary Goodman,  Lee Erman and Ken Siberz in partic- 

ular and by many members of the project staff in general.    An important point 

of reference was a speech recognition system developed by P. Vicens and 

D.  Reddy.     It  is operational at the A.   I.  Project and is described in Vicens' 
g 

doctoral dissertation  . 

GOALS 

There were two goals for this work.    The first was to develop an algorithmic 

learning technique for segmenting and classifying speech utterances,  minimizing 

dependence on heuristic methods and  leading  to a compact dictionary representa- 

tion of reference utterances.    The second goal was to develop a method of iden- 

tifying unknown utterances by comparing them with the reference utterances. 

BACKGROUND 

g 
The Reddy-Vicens system   partitions an utterance into segments by means of 

heuristic  formulas applied to the differences between successive periodic 

samples of the  speech waveform.     In general,   successive samples which exhibit 

small  intersample differences are grouped into segments.    Classification 

formulas are  then used to place the segments  into 5 phonetic categories.    For 

reference utterances,   the classification and time duration of each segment 

are stored,  along with a set of primary data measurements  for each segment 

typical  of the samples which were grouped.     This data is used for subsequent 

comparison with segments of utterances to be identified.     In the comparison 

of an unknown and a reference utterance,  corresponding segments are determined 

from the classifications and then their durations and data measurements are 

compared. 
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A classification in terms of standard phonemes or phoneme group categories 

might result in a more compact reference representation by eliminating the need 

to store the typical measured data for each segment. An unknown utterance 

would then be identified from its segment classifications and durations. 

An attempt was made to apply such classifications to the Reddy-Vicens segments 

by standard pattern matching techniques, using a training set of data measure- 

ments corresponding to standard phonemes. This attempt failed because of 

wide variations in the training set among the data representing a given phoneme. 

This led to doubts about the feasibility of characterizing classical phonemes 

in terms of speech data measurements, at least in terms of the measurements 

being used. It seemed more reasonable to let the measurements themselves 

identify phoneme-like classes by means of clustering analysis. 

DATA 

The methods described in this report were tested on the list of 54 computer- 

related words from Gold ,  shown in Figure 1.    The list was recorded by Dr. 

K.  Stevens at Cambridge, Massachusetts, and provided to the Project by 

Dr. D.   fiobrow.    The preprocessing hardware will be described only briefly since 
g 

it is described in detail in Vicens' dissertation   *    Only three channels were 

used, corresponding roughly to the frequency range of the first two formats 

and to the higher frequencies.     The filters were 150 Hz.  to 900 Hz.,  900 Hz. 

to 2200 Hz., and 2200 Hz.  to 5000 Hz.    Readings were taken for each channel, 

every ten milliseconds, of the peak-to-peak amplitude and the number of zero 

crossings for the ten-millisecond period.    There are thus six measurements, 

so that each sample can be represented by a point in a six-dimensional space. 

For each utterance, all amplitude values are normalized so that the highest 

amplitude found in the first channel has a value of 64.    The zero crossing 

values are proportional to the number of sign changes in the signal in the 10 

millisecond period.    They are taken as a rough estimate, within each filter 

band, of the formant location,  or the peak position in the energy versus fre- 

quency curve. 

The 270 utterances  (five repetitions of 54 words) resulted in a total of 

19,850 sample points.    This data was available in digital form on tape. 
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CLUSTIiRING 

Clustering involves partitioning a set of points in a space into regions 

according to some criterion of similarity.  In the work being reported here, 

the criterion chosen was geometric, or Euclidean, distance between the sample 

points.  The clustering method applied to speech data retains an important 

phoneme characteristic in that relatively long periods during which the 

speech parameters vary slowly provide more points and, therefore, are assumed 

to be more significant than periods of rapid variations.  It was thus expected 

that sample points would be relatively dense in regions of the measurement 

space corresponding to periods of slow parameter variations and that similar 

regions would occur in a number of different utterances.  The centers of these 

regions could then be found by clustering analysis.  Since these phoneme-like 

clusters would be generated algorithmically from the hyperspace points and 

would be used like phonemes, they were called "Hyperphonemes." The abbrevia- 

tion "HP" will be used in this report. 

The clustering methodology used borrowed heavily from techniques reported in 

the literature »  »  ♦  »  »  .it will be summarized here and described in 

more detail in Appendix A.  The process begins with the selection of a large 

number of cluster centers scattered throughout the measurement space. These 

are components of the "natural" clusters being sought.  (The reader will find 

in the referenced literature attempts to define "cluster" and the "similarity" 

of or "distance" between points in a cluster.) Cluster boundaries are 

determined by assigning each point to its nearest center.  The center of each 

cluster is then recalculated.  This assignment and center recalculation process 

is repeated until it converges, as indicated by some measure of cluster com- 

pactness.  The "natural" clusters are then approached by a process of combin- 

ing the closest clusters, interspersed with reassignment and center recalcula- 

tion.  Because of these iterative processes, the exact location and number of 

initial clusters should be uncritical, affecting mainly the subsequent computa- 

tion time. 

An important question concerns where to finally stop the combining processes. 

Where there is a natural number of clusters, such as in single font character 

I 
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recognition, one might expect the minimum cluster distance to take a sudden 
3 

jump when the subclusters within the natural ones have all been combined .  No 

such terminating signal appeared for the speech data, so the <. id point for the 

cluster combining process was arbitrarily chosen as ten clusters . A large 

number of clusters provides more resolution for distinguishing among speech 

utterances at a cost of more segments to store and more computation in the 

matching process. Fewer clusters means reduced storage and computation but 

more chance of confusion among acoustically similar utterances. 

After the iteration process, the clusters remaining were ordered by magnitude 

of the amplitude components of the coordinates of the cluster centers and 

given hyperphoneme identification numbers. The list of the HPs used for 

subsequent matching is given in Figure 2.  In this table, each HP identifica- 

tion number is followed by the HP number of the four closest HPs and the square 

of the distance separating them from the given HP. The concept of distance 

between neighboring HPs is crucial to the subsequent process of identifying 

unknown utterances. The six coordinates of each HP are also given in Fißure 2. 

Al, A2, and A3 are derived from the amplitudes of the signals in the three 

channels. The Zs are derived from the zero crossing data. The number of 

points that were assigned to each HP are shown along with the variance calcul- 

ated as the average squared distance of the points from the cluster center. 

There were 132 points which did not participate in the final determination 

of the center locations because they were more distant than 16 from all the 

cluster centers. 

SEGMENTATION 

Segmentation involves partitioning an utterance into fundamental units. An 

unknown utterance will later be identified by matching its segment pattern 

against a standard representation in a dictionary. 

In order to generate the segments, each of the points of the original 270 

utterances was labeled with the ID number of the closest HP.  Successive 

points with ehe same ID number were then grouped into a segment and the seg- 

ment was assigned a duration equal to ten milliseconds times the number of 

successive points.  Figure 3 shows a time scale plot of the segments for the 

5 repetitions of the word DELETE. The HP number is shown for each segment. 
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COMPACTING 

The HPs represent regions in the measurement space.  The clustering process 

should, by definition, minimize the number of sample points near the region 

boundaries. However, there were cases where the path of successive samples 

oscillated across a boundary, resulting in several segments whose labels 

alterwr-ted between two HPs. There were also 10 millisecond (one sample point) 

segments preceded and followed by segments from relatively distant regions. 

It seemed that both dictionary storage space for the standard representation 

of each word and computation time for the matching process could be reduced 

by combining the oscillating sequences and eliminating the short isolated 

segments.  It also appeared that adjacent segments whose HPs were closest 

neighbors in the measurement space could usually be combined with no loss 

of discrimination among words. 

For compacting and for subsequent matching, a maximum neighbor distance 

was defined such that two HPs separated by no more than this distance would 

be called neighbors.  The distance was chosen as the smallest that provided 

each HP with at least one neighbor. From Figure 2, it is seen that HP 6 

is farthest from its closest neighbor, requiring a maximum neighbor distance 

of 24 (/SSS =23.6).  It turned out that two HPs have two neighbors and 

one has three. The compacting rules caused adjacent neighbor segments to 

be combined. They are given in Appendix B. 

The compacting operation has a price. The information lost can in some cases 

be crucial to the subsequent matching process. For example, in the word 

QUARTER, two short HP 7 segments surrounded by two longer HP 9 neighbor 

segments are combined with them and an interior ten millisecond HP 5 segment 

is dropped, throwing away the "t" sound and forming one long HP 9 segment, 

which looks like the long HP 9 segment in CORE. More often the results 

were to make corresponding segments in repetitions of the same word look 

more alike, but it is apparent that too much compacting was done. 

An example of the results of the compacting operation are shown in Figure 4 

for DELETE. HP numbers with a period represent an HP half way between the 

numbers shown; e.g., HP 5.6 is between HP 5 and HP 6. 
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MATCHING 

At this point, a speech utterance was characterized as a string of number 

pairs, each pair representing a speech segment and consisting of a 6-bit dura- 

tion in tens of milliseconds and a 5-bit number. Dictionary entries for 

reference could thus be stored using one 36-bit computer word for a heading 

and one word for every three segments.  The basic dictionary required an 

average of 3 1/2 words per entry, compared with about 14 words for comparable 

information in the Vicens-Reddy system . The next requirement for identifying 

T unknown utterances was an algorithm to provide a numerical measure of the 

* similarity of two utterances characterized as strings of hyperphonemes. 

In the comparison between an unknown utterance and a dictionary entry, a 

penalty score is accumulated tor every difference found. A zero score indicates 

near identity and the dictionary entry with the lowest score is taken as 

the best match.  In contrast to the algorithmic nature of the classification 

system, the matching rules are quite heuristic. They are probably oriented 

too closely to the characteristics of the test data and may need to be modified 

if new data are tried. 

The matching algorithm is giveu in Appendix C.  It involves setting up corres- 

pondences between segments of two utterances based on their HP neighbor dist- 

ance. Penalty scores are applied for position, duration and HP number differ- 

ences between corresponding segments.  The component scores in a matching are 

accumulated as they are calculated.  In a comparison of an unknown utterance 

with a series of dictionary candidates, the matching is terminated whenever 

the accumulated score exceeds the lowest score previously calculated. 

RESULTS AND CONCLUSIONS 

The matching algorithm has been tested on the list of 270 utterances. The first 

repetition of each of the 54 words, the ones used to generate the hyperphonemes, 

were stored as a dictionary.  The remaining 216 utterances were then matched 

against the dictionary.  189 of these, or 87%, were correctly identified by 

the lowest score. 

1 
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Some of the incorrect identifications were due to variations in the 5 repeti- 

tions of a word such that the first repetition wns not the most representative. 

Therefore, an experiment was run to see how many of the 216 utterances had 

to be added to the dictionary to insure 100% correct recognition. Since a 

few of the correct identifications were by very close margins, a larger score 

difference was required for acceptance. An utterance was added to the dictionary 

whenever its lowest score in comparison with a correct entry was not at least 

ten points below the lowest comparison with all the wrong entries.  The first 

pass resulted in 28 new dictionary entries.  Since some of these new entries 

were too close to previously correctly identified utterances, a second pass 

was made using the expanded dictionary.  Four more utterances were added to 

the dictionary, resulting in a total of 32 entries in addition to the original 

54.  At this point the system stabilized since a third pass did not result in 

any further additions to the dictionary.  Figure 5 shows some samples of the 

printout from the third pass.  For each utterance the scores achieved in 

matching with the correct dictionary entry or entries are shown in comparison 

with the lowest score achieved in comparison with the wrong entries.  Each 

utterance compared with itself achieved, of course, a 0 score. 

It is important that the 216 utterances representing the second through fifth 

repetitions of each word were not involved in the generation of the hyper- 

phonemes or of the original dictionary entries.  The initial 87% recognition 

of these 216 was achieved with almost no attempt to optimize rules or parameters. 

Adding 32 of the 216 to the dictionary resulted in correct identification 

of all 216.  Ther.e 32 actually represented 26 different words of which 22 

required one extra dictionary entry, 2 required two extra, and 2 required 

three extra. CORE and FOUR were the worst cases and inspection of the data 

shows that information lost in the combining process was crucial. CORE was 

most often confused with QUARTER, and FOUR most often with CORE.  Requiring 

2 extra entries were WORD and DIVIDE.  WORD was confused with FOUR and QUARTER; 

DIVIDE, with NINE and WORD.  A majority of the cases requiring a second dictio- 

nary entry involved an excessive variation among the repetitions of a word 

rather than a very low competing score from some other word. 



Comparison with the Vicens-Reddy results is difficult since their results on 

the same data are presented differently. However, it seems clear to me that 

their correct identification rate is higher. What the comparison would be 

with a comparable period of development is impossible to conjecture. 
1. 

The significance of the work lies in the compact dictionary, the algorithmic 

nature of the clustering and segmentation, and the neighbor-distance concept 

used in comparing strings. 

TIMING 

The work was done on a time-shared PDP-10 at the A.I. Project with about six 

other users active. The programs were written in SAIL, an ALGOL-like language. 

It is not possible to estimate the amount of computer time devoted to the 

computation, so elapsed time estimates are given here. 

Not counting manual interactions which could be programmed, it took about 

12 minutes to enter 3231 converted and scaled points and arrive at the initial 

212 clusters. The time consuming part of the subsequent clustering iterations 

was the assignment of all points to their closest cluster center. This time 

depended on the number of clusters remaining after combining closest clusters. 

24 assignment cycles were used in going from 212 to 10 clusters. These cycles 

took about 72 minutes.  It is probable :hat a much smaller number of initial 

clusters would have worked as well, greatly reducing the calculation time. 

About 10 minutes were taken by the other operations.  Final assignment of 

all 16000 points to their nearest HP took about 10 minutes. Compacting took 

about 5 minutes.  In matching, each comparison of an utterance with 54 dictionary 

entries took about 1 second. No attempt was made to implement a candidate 

selection process to reduce the number of matchings attempted. 

DIRECTIONS FOR FUTURE WORK 

The most important problem for future work deals with the use of additional 

test data to determine the extent to which the combining and matching rules 

have been optimized for the particular set of test data. The next area of 

concern is parameter and procedure optimization. The only attempt at optimiz- 



r 
( 

i 

i 

-9- 

I 

I 

I 

I 

ing parameters occurred when variations were tried on the scores applied 

to unlinked segments. Some candidates for optimization include the choice 

of logarithmic conversion and the initial scale factors for the six parameters, 

the number of hyperphoneaes( the rules for combining segments, the maximum 

distance allowed for neighbors, and the matching rules and parameters. It 

has been pointed out, for example, that the combining rules for ten millisecond 

segments sometimes result in throwing away important information. 

Finally, it would be interesting to investigate the effects of higher resolu- 

tion input with more channels. 

o 
NOTE: A very relevant reference, by Steingrandt and Yau , appeared after 

completion of this paper. They classify waveforms by sequential features 

which are like hyperphonemes, although the clustering technique and distance 

measures are different and segment duration is ignored. They used 50 channels 

in their input analyzer. Recognition was done by a sequential state machine 

for each dictionary word, made as a composite of many training samples. 

Recognition results were presented only for the training set. 

APPENDIX A. CLUSTERING METHODS 

In clustering points whose individual dimensions are different kinds of 

measurements, the choice of scaling factors is very important. A change in 

scaling factor will change the similarity measure (distance in our case) 

among points, altering the way the points are grouped into clusters. This 

problem arises with the six dimensions of the speech data, since amplitude 

and zero crossings are measured in different units and the relative import- 

ance of the measurements from the three channels is unknown. The first 

choice of scale factors gave good enough results so that obvious opportunities 

for optimization were deferred as candidates for follow-on work. 

The fundamental scale factor decision was the choice of a logarithmic conver- 

sion, to conform with human perception of relative amplitude and pitch changes. 

The amplitudes in the second and third (higher frequency) channels were first 
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divided by two in order to give them less weight than the amplitude in the 

first channel.  Since the zero crossing counter in the preprocessor only 

operates when the signal amplitude is above a preset minimum, zero crossing 

values corresponding to frequencies well below the filter lower cutoff are 

sometimes encountered. Such values were arbitrarily set equal to zero for the 

second and third channel and signal values were converted as ratios to the 

cutoff value chosen. After logarithmic conversion, further scale factors 

were applied to all values, equivalent to raising the arguments to various 

powers. This brought the resulting values into an approximate range of 0-60 

for the amplitudes and 0-25 for the zero crossings. As an example, an ampli- 

tude of 64 in the second channel would lead to a value of 50, using a scale 

factor of 33.3: 

50 = 33.3 log10 
(")■ 

A channel 2 zero crossing value of 24 would lead to: 

15 » 50 log10 (24^ 

where 12 represents to lower cutoff value and 50, the scale factor. The ranges 

chosen allow a maximum diagonal across the hyperspace of about 113. The scale 

factors greatly de-emphasize the importance of the zero crossings and allow 

all values to be represented by 6-bit numbers. The discontinuity in taking 

the logarithm of a zero argument was arbitrarily resolved by using the same 

value as for an argument of one, namely zero. It might have been better to 

add one unit to all arguments before conversion. 

After conversion, some small-valued sample points at the beginning and end of 

an utterance became zero and were eliminated, leaving about 16,000 points. 

The points from the first repetition of each of the 54 words, a total of 3,231, 

were then used for the clustering process. The only difference from standard 

reported clustering techniques was in the method of forming initial clusters. 

The basic idea was to form many small clusters in the high density regions. 

A density was calculated for each sample point as the number of points lying 

within a hypersphere centered on the given point. The hypersphere radius 



f 

( 

I 

I 

•11- 

I 
I. 
I 
L 
I 

chosen was eight.  (The maximum distance between points was approximately 80.) 

The points were then ordered by density and the highest density point was 

taken as the first cluster center. Subsequent cluster centers were formed 

from the remaining points in descending density order, taking only those 

points whose distances from all previously selected cluster centers were 

greater than a selected minimum and whose densities were greater than one. 

The minimum distance determined the number of initial cluster centers. A 

radius of eight gave 212 starting clusters. There were 39 isolated points 

(density = 1) which were not included in any of the initial clusters. An 

iterative procedure was then followed consisting of the following two steps: 

(1) Assign all points to the nearest cluster center, omitting those farther 

than a predetermined maximum distance from all cluster centers. Re- 

calculate the center positions. Repeat until the number of unassigned 

points and the mean square distance of all assigned points from their 

cluster center are stabilized. 

(2) Combine the closest clusters so that all remaining clusters are separated 

by at least a minimum distance. Each combination involves a merger of 

points and a recalculation of the cluster center. This was done until 

a 40-50% reduction in the number of clusters was made. Since combining 

two clusters preserves their outer boundary while merging the center 

locations, it seemed reasonable to then reassign (step 1). This may be 

unnecessary until the end of the combination process. 

All distances were calculated as the sum of the squares of the individual 

dimension differences.  Since only relative distance comparisons were needed, 

the square root never had to be computed. To speed up the process of finding 

all points within a given distance of a given point, an indexing technique 

was used. This involved partitioning the hyperspace into cubes and chaining 

together the points within each cube. For distances no greater than the 

cube side, only the cubes surrounding the given point needed to be searched. 

This was used in the original density calculations and in the nearest-neighbor 

assignment process. 
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APPENDIX B.  COMPACTING RULES 

The compacting rules for combining adjacent segments were: 

(1) Segments not immediately adjacent to a neighbor were not affected. 

Example:  4(20), 9(30) -► 4(20), 9(30).  HP 4 for 20 milliseconds followed 

by HP 9 for 30 milliseconds remains unchanged. 

(2) Two segments with the same HP numbers surrounding a ten-millisecond 

segment were combined, including in the total duration the extra ten 

milliseconds. 

Example:  4(20), 9(10), 4(30) -►4(60). 

(3) Two adjacent neighbor segments were combined. Since HPs 2, 5 and 7 

had more than one neighbor, there were some sequences of three or more 

segments with different HPs wherein all adjacent segments were neighbors. 

In these cases, the closest neighbor pairs were combined first. Under 

this rule, a combined segment did not participate in further combina- 

tions unless it was originally part of an oscillating sequence of the 

same two HPs  When adjacent segments were combined, their durations 

were summed. If the duration corresponding to either HP had two or more 

times the duration corresponding to the other, the HP number representing 

the longer duration was applied to the combined segment. Otherwise, a 

number representing an HP half way between the two was applied.  For 

this purpose, numbers 11-17 were added to the HP list. 

Examples:  3(30), 4(60) -> 4(90). 3 and 4 are neighbors. 

3(30), 4(50) -*■  3.4(80). 3.4 is halfway between 3 and 4. 

This form is used for printing instead of the actual 

internal HP number. 

4(30), 3(30), 4(40) -> 4(100). Oscillating sequence. 

F(30), 7(30), 9(30) -»■ 5(30), 7.9(60).  7 is closer to 9 than 

to 5. 

(4) Ten-mi Hi second segments not covered by the preceding rules were 

eliminated. 

Example:     4(20),  9(10),  7(30) ■> 4(20),  7(30). 
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APPENDIX C.  MATCHING ALGORITHM 

In matching, a numerical measure is sought for the similarity of two utterances. 

The matching process begins with a comparison of overall duration. A duration 

difference greater than 150 milliseconds immediately terminates the matching 

process with a rejection. Otherwise, duration differences greater than 

40 milliseconds receive a score of 0.2 times the excess over 40. This often 

helps to distinguish among utteranc3S with similar parameters. 

When a word is spoken several times at slightly different speeds, we cannot 

expect all parts of it to be proportionally speeded or slowed. Nevertheless, 

it proved helpful, in looking for correspondences between parts of two examples 

of the same word, to make their total durations the same. Tlierefore, the 

segment durations of the shorter utterance are expanded proportionally, rounded 

to the nearest ten milliseconds, so that the overall durations of the two 

utterances are equal. The new segment boundaries are used for subsequent 

position correspondence calculations, but the original durations are also 

retained for duration difference measures.  Figure 6 shows an example of the 

first and fourth versions of DELETE to illustrate matching.  Since the overall 

duration difference is 30 milliseconds, the difference score is zero. Figure 7 

shows the conditions after expansion of the first utterance. 

The matching algorithm forms links between "corresponding segments" of the 

two utterances being compared. Corresponding segments are defined roughly 

as closest neighbors occupying similar time positions in the two utterances. 

The algorithm must, therefore, consider each segment of each utterance, searching 

the corresponding position of the other utterance for neighbors.  To do this, 

it considers in time sequence each segment of one utterance and then each seg- 

ment of the other.  For each segment being considered, a region of the other 

utterance is scanned beginning 30 milliseconds before the start of the segment 

under consideration and ending 30 milliseconds after the end of the segment 

under consideration to allow for speed variations. For each segment of which 

any part is in the scanned area, two measures are calculated. The first 

measure is the overlap with the original segment under consideration. The 
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T overlap is a measure of time position correspondence consisting of the number 

» of ten millisecond periods common to both segments in the expanded plot.  If 

^ they have no segments in common, the overlap is negative and its magnitude is 

X the number of ten millisecond periods separating them.  The second measure 

is the neighbor distance between the HPs of the two segments being compared. 

The actual distance is used here if it is no greater than 24, the maximum 

neighbor distance chosen in the preceding compacting process. A more distant 

HP is eliminated from consideration. A closeness index is formed consisting 

of the distance measure less the smaller of ten or two times the overlap 

measure. The lowest closeness index selects the closest neighbor (if any) 

within the scanned range, with some bias towards the most overlapping segment 

in the case of two candidates with nearly equal distance measures. A link is 

formed from the original segment under consideration to the selected segment 

in the scanned area.  If the two utterances being compared are thought of as 

laid out on parallel lines as shown in Figure 7 and links are thought of as 

a line from the middle of one segment to the middle of another, then no link 

is allowed to cross any previous one. A segment has only one link to another 

but is allowed up to five links from other segments (a question of storage 

allocation) as long as these links do not cross other links. Figure 8 shows 

the example with the links indicated by arrows. 

A neighbor distance score is applied once to every linked pair of segments as 

a measure of how closely they match. This is the distance between their HPs 

times the actual (not expanded) duration in milliseconds of the shorter 

segment of the pair, divided by 100. The thought here was that a short seg- 

ment whose HP is a neighbor of, rather than identical to, that of a longer 

segment to which it is linked should not be penalized as much as a longer 

segment would be.  The duration difference is separately penalized.  In the 

example, the distance between HP 5 and HP 5.6 is 12. Therefore, the third 

linked pair gets a score of 13 since the original duration of the HP 5 seg- 

ment was 110 milliseconds. Segments which are not linked to any other are 

penalized by a score of 15 plus 3 times the original duration of the segment 

in tens of milliseconds.  This non-linked penalty resulted from a few experi- 

ments with different values, the only such experiment made. Figure 9 shows 

the neighbor distance scores applied to the example. 
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A difference in duration between linked segments is the main thing distinguish- 

ing some correct matches from incorrect ones. Therefore, a duration difference 

score is calculated. The formula is as follows (where DD is measured in tens 

of milliseconds based on the durations before expansion): 

0 if DD is less than 2; 

2(DD-1) for DD from 2 through 6; 

10+4(DD-6) for DD from 7 through 9; 

22+8 (DD-9) for DD greater than 9. 

This formula applies a much stronger penalty to large differences than to 

small ones.  It applies directly to individual linked pairs such as the 

8 to 8 or the 1 to 1.2 in the example. However, where more than two segments 

are tied together by a continuous chain of links, a group is formed. Tne 

5, 6, 5 to 5.6 group in the example illustrates this. The durations of the 

grouped segments in each utterance are summed and the overall difference 

used in the formula. This avoids penalizing oscillations among neighboring 

segments that remain after the combining operation. For the illustrated 

group, the three original durations summed to 19, versus 19 for the HP 5.6 

segment, for a duration difference of 0. Note that the unmatched HP 8 segment 

does not participate in this process. 

Finally, a position difference score is calculated for each linked pair based 

on the difference between the center positions of the expanded segments. 

Integer division is used in calculating the centers, resulting in rounding 

down to the next lower integer number of tens of milliseconds. The score is 

half what the duration difference score would be for the same argument. In 

the example, the matching HP 8 segments have a position difference of 27-24 = 3 

for a score of 2. For groups, the center position is calculated as a center 

of gravity of the segments involved so that unlinked segments inside the group 

do not participate. Ir the illustration, the center position of the HP 5, 6, 

5 part of the group is (3x1+5x5+11x16) divided by 19 = 10.  This is compared 

with the value of 11 for the HP 5.6 segment for a difference score of 0. 

Figure 10 shows the example with duration and position difference scores. 
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L 

INSERT NAME 

DELETE END 
REPLACE SCALE 
MOVE CYCLE 
READ SKIP 
BINARY JUMP 
SAVE ADDRESS 
CORE OVERFLOW 
DIRECTIVE POINT 
LIST CONTROL 
LOAD REGISTER 
STORE WORD 
ADD EXCHANGE 
SUBTRACT INPUT 
ZERO OUTPUT 
ONE MAKE 

TWO INTERSECT 
THREE COMPARE 
FOUR ACCUMULATE 
FIVE MEMORY 
SIX BYTE 
SEVEN QUARTER 
EIGHT HALF 
NINE WHOLE 

MULTIPLY UNITE 

DIVIDE DECIMAL 
NUMBER OCTAL 

Figure 1:  54 word list 
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DELETE 
2 6 34 

5 6 8 6           5 8 6 5 2 1 3 1 

1 
• 

5 8 6 B   1: ̂ h 3 1 

245                                          7 
2 1 6 8   6 5            8          6         5    2 1 3 1 

5 
1 6 5 6         8 6 5  |2        1 3 1 

1 5 6 B     6 
5    « 

»          8 6 5     2 1 3 1 

Figure 3.    The 5 repetitions of DELETE,  illustrating segmentation 

DELETE 

5 6 8 5 8 5.6 i.2 3 1 

1 6 5 8 5 1.2 3 1 

l 

2 6 8 6 5 8 6 1 3 1 

1 5.6 8 6 1 3 1 

L - ■ 

1 5.6 8 5.6 8 5.6 1.2 3 1 

L 
I 
I 

Fi^ jur e 4. St sgments of I DELETE af ter CO mpac ting 
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OUTPU WORD NO.   42 

1:     42-0 42-72 

2:     42-89 42-112 

3:     42-63 42-22 

4:     42-101 42-79 

5:     42-135 42-0 

SMALLEST ERROR SCORE IS 9-169 

SMALLEST ERROR SCORE  IS 47-164 

SMALLEST ERROR SCORE  IS S4-10S 

SMALLEST ERROR SCORE  IS 54-146 

SMALLEST ERROR SCORE IS 9-108 

2 DICTIONARY ENTRIES 

MAKE WORD NO. 43 

1 43-0 43-53 

2 43-53 43-0 

3 43-87 43-42 

4 43-77 43-48 

5 43-97 43-43 

SMALLEST ERROR SCORE IS 48-58 

SMALLEST ERROR SCORE IS 23-55 

SMALLEST ERROR SCORE  IS 23-66 

SMALLEST ERROR SCORE IS 23-77 

SMALLEST ERROR SCORE IS 48-105 

2  DICTIONARY ENTRIES 

INTER WORD NO.   44 

1:     44-0 SMALLEST ERROR SCORE IS 14-271 

2:     44-73 SMALLEST ERROR SCORE IS 52-227 

3:     44-57 SMALLEST ERROR SCORE IS 52-206 

4:     44-40 SMALLEST ERROR SCORE IS 52-189 

5:     44-83 SMALLEST ERROR SCORE IS 14-314 

1  DICTIONARY ENTRIES 

COMPA WORD NO.   45 

1:     45-0 SMALLEST ERROR SCORE IS 37-184 

2:     45-50 SMALLEST ERROR SCORE IS 26-170 

3:     45-34 SMALLEST ERROR SCORE IS 37-194 

4:     45-47 SMALLEST ERROR SCORE IS 47-182 

5:     45-59 SMALLEST ERROR SCORE IS 37-166 

1  DICTIONARY ENTRIES 

Figure 5:     Sample of Matching 
Results 
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1 
I 
I 

DELETE 
0       3 8   10 21 31 37        41 50 56 

5 6 8 5 8 6.6 1.2 3 1 

0    2 21                  28 37 45 54 59 

1 5.6 8 6 I 3 
' 

Figure b.  Example to illustrate the matching algorithm 

DELETE 
0       3              i 5      11 22 33 39       43 52 5S 

5 

o   ; 

1      6 8 5 8 5.6 1.2 3 1 

> 2 1 28 37                   45 54          59 

1 5.6 8 6 1 3 !  1 

Figure 7.  Example after expansion 

DELETE 
0       3              8       11 22 33 39 43 53 59 

5 6 8 5 8 5.6 1.2 3 1 

x\   / / / // 
/ 

/    ' 
1 

o,^/ 21 / 28         / v. 54    \f 59 

1 5.6 8 6 1 3 
^ 

Iiguro 8.  Example with segments linked 
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DELETE 
0 3 11 22 33 39 43 53 59 

5 6 8 5 8 5.6 1.2 3 1 

\A 21 
/ // //   ' \\ w 

0    2 1/ /a 
28 

7/ 
/    3 

37 '       45 \ 
0 54   It 59 

1 5.6 8 6 1 3 1 

Figure 9.    Example with neighbor distance scores 

DELETE 
0       3 8      11 22 33 39       43 53 59 

5 6 8 5 1      . 5.6 1.2 3 1 

0    2 W / 

- / 28         / I "      45 54    If 59 
1 5.6 8 6 1 3 1 

0/0 4/2 4/3 6/0 0/0 0/0 

Figure  10.     Example with duration/position difference scores 


